Inertial proximal alternating minimization for nonconvex and nonsmooth problems
نویسندگان
چکیده
In this paper, we study the minimization problem of the type [Formula: see text], where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L.
منابع مشابه
The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM
We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known ra...
متن کاملProximal alternating linearized minimization for nonconvex and nonsmooth problems
We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful KurdykaLojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze va...
متن کاملAn Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
We investigate the convergence of a forward-backward-forward proximal-type algorithm with inertial and memory effects when minimizing the sum of a nonsmooth function with a smooth one in the absence of convexity. The convergence is obtained provided an appropriate regularization of the objective satisfies the KurdykaLojasiewicz inequality, which is for instance fulfilled for semi-algebraic func...
متن کاملThe Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems
We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonsmooth, nonconvex optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential upd...
متن کاملiPiano: Inertial Proximal Algorithm for Nonconvex Optimization
In this paper we study an algorithm for solving a minimization problem composed of a differentiable (possibly nonconvex) and a convex (possibly nondifferentiable) function. The algorithm iPiano combines forward-backward splitting with an inertial force. It can be seen as a nonsmooth split version of the Heavy-ball method from Polyak. A rigorous analysis of the algorithm for the proposed class o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017